Artificial

Joint Constrained Learning with Boundary-adjusting for Emotion-Cause Pair Extraction

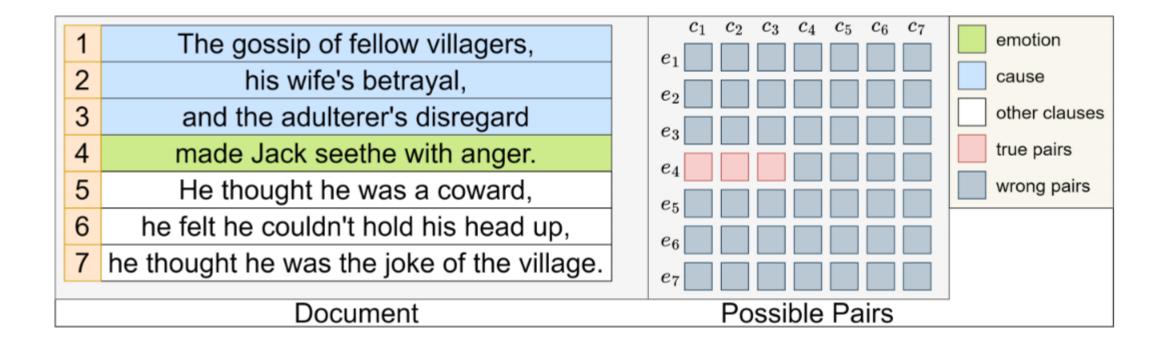
Huawen Feng, Junlong Liu, Junhao Zheng,
Haibin Chen, Xichen Shang, Qianli Ma*
School of Computer Science and Engineering,
South China University of Technology, Guangzhou, China
541119578@qq.com, qianlima@scut.edu.cn

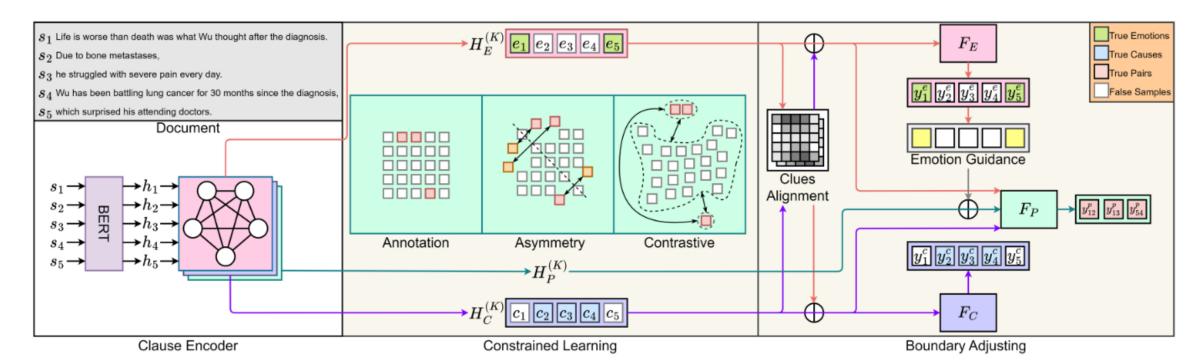
2023. 9. 14 • ChongQing

— ACL 2023

Reported by Renhui Luo

- 1.Introduction
- 2.Overview
- 3.Methods
- 4. Experiments





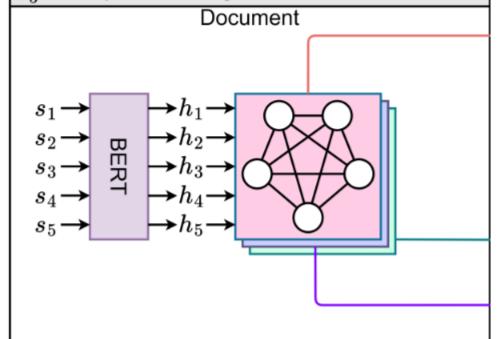
Introduction

Overview

$$P = \{..., (s_i, s_j), ...\} \qquad i, j \in [1, n] \quad (1)$$

$$Y_i^e = \begin{cases} 1 & if(s_i, s_j) \in P \\ 0 & otherwise \end{cases}$$
 (2)

$$Y_j^c = \begin{cases} 1 & if(s_i, s_j) \in P \\ 0 & otherwise \end{cases}$$
 (3)


 $oldsymbol{\mathcal{S}}_1$ Life is worse than death was what Wu thought after the diagnosis.

 $oldsymbol{s}_2$ Due to bone metastases,

 s_3 he struggled with severe pain every day.

 $oldsymbol{s}_4$ Wu has been battling lung cancer for 30 months since the diagnosis,

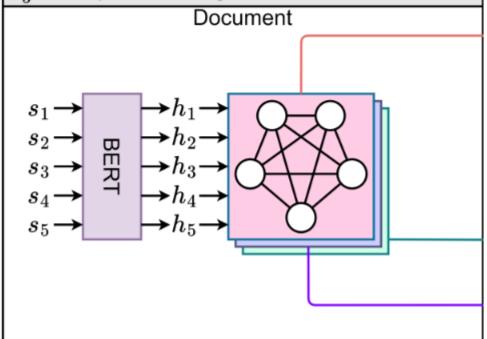
\$5 which surprised his attending doctors.

Clause Encoder

$$H_{E}^{(0)} = [h_{1}^{e(0)}, h_{2}^{e(0)}, ..., h_{n}^{e(0)}]$$

$$H_{C}^{(0)} = [h_{1}^{c(0)}, h_{2}^{c(0)}, ..., h_{n}^{c(0)}]$$

$$H_{P}^{(0)} = [h_{11}^{p(0)}, h_{12}^{p(0)}, ..., h_{nn}^{p(0)}]$$

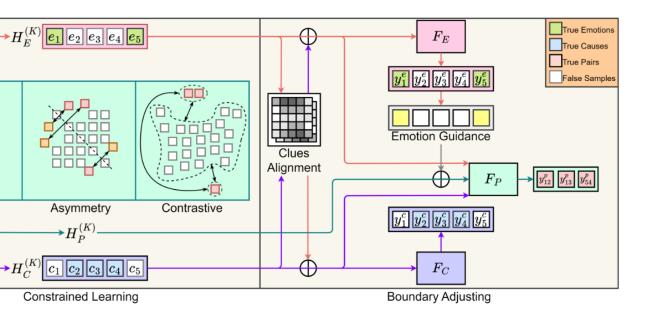

$$h_{i}^{e(0)} = h_{i}^{c(0)} = h_{i}$$

$$h_{ij}^{p(0)} = Linear_{pair}([h_{i}; h_{j}])$$

$$h_{v}^{(t+1)} = (W^{(t)}h_{v}^{(t)} + b^{(t)})$$

$$+ \frac{1}{|N(v)|} \sum_{r \in R} \sum_{z \in N(v)} (W_{r}^{(t)}h_{z}^{(t)} + b_{r}^{(t)})$$
(5)

- $oldsymbol{s}_1$ Life is worse than death was what Wu thought after the diagnosis.
- \$2 Due to bone metastases,
- s_3 he struggled with severe pain every day.
- $oldsymbol{s}_4$ Wu has been battling lung cancer for 30 months since the diagnosis,
- \$5 which surprised his attending doctors.


Clause Encoder

$$H_E^{(K)} = [e_1, e_2, ..., e_n]$$

$$H_C^{(K)} = [c_1, c_2, ..., c_n]$$

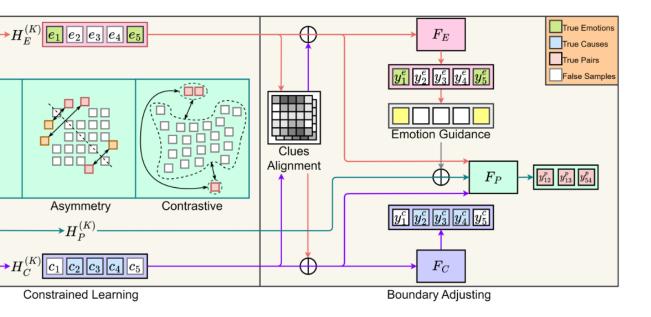
$$H_P^{(K)} = [p_{11}, p_{12}, ..., p_{nn}]$$

$$e_i = h_I^{e(K)} \quad c_i = h_I^{c(K)} \quad p_{ij} = h_{ij}^{p(K)}$$
(6)

$$m_{ij} = (c_i)^T \times e_j$$

$$c_i \in H_C^{(K)} \quad e_j \in H_E^{(K)}$$

$$M_{ij}^{E2C} = \frac{exp(m_{ij})}{\sum_{k=1}^n exp(m_{ik})}$$

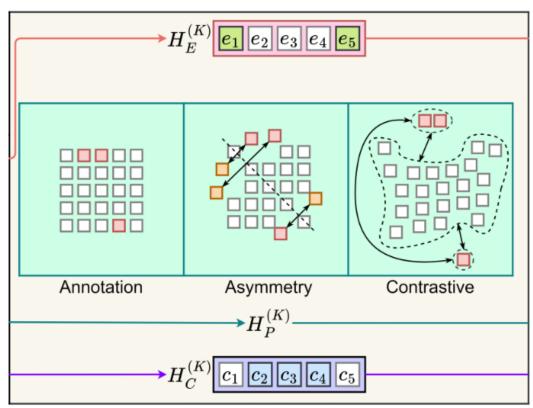

$$(10)$$

$$U^{E2C} = [u_1^{E2C}, u_2^{E2C}, ..., u_n^{E2C}]$$

$$u_i^{E2C} = \sum_{j=1}^{n} (M_{ij}^{E2C} \cdot e_j)$$
(11)

$$\overline{H_C} = H_C^{(K)} + ReLU(W_{e2c}U^{E2C} + b_{e2c})$$

$$Y^C = F_C(\overline{H_C})$$
(12)

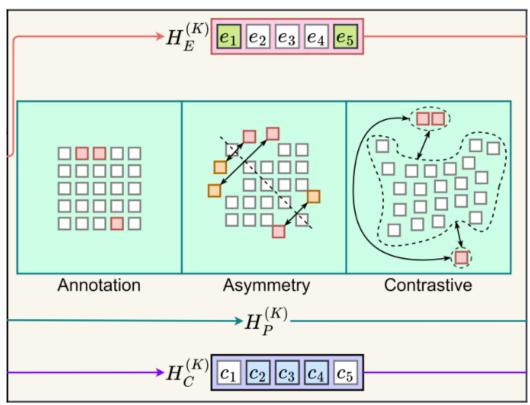

$$Y^{P} = F_{P}(\overline{H_{P}})$$

$$\overline{H_{P}} = [\overline{p_{11}}, \overline{p_{12}}, ..., \overline{p_{nn}}]$$

$$\overline{p_{ij}} = W_{p}ReLU(p_{ij} + EMB_{e}(Y_{i}^{e})) + b_{p}$$

$$p_{ij} \in H_{P}^{(K)}$$

$$(13)$$



Constrained Learning

$$L_{Annotation} = \sum_{(s_i, s_j) \in \hat{P}} -log(y_{ij}^p) \tag{7}$$

$$L_{Asymmetry} = \sum_{(s_i, s_j) \in \hat{P}} log(y_{ji}^p) - log(y_{ij}^p)$$
(8)

$$L_{Contrastive} = \frac{1}{|\hat{P}|} \sum_{(s_i, s_j) \in \hat{P}} max(d(p_{ij}, center_i))$$
$$- d(p_{ij}, x_{ij}) + \gamma, 0)$$
(9)

Constrained Learning

$$L = L_{emotion} + L_{cause} + L_{Annotation}$$

$$+ \alpha L_{Asymmetry} + \beta L_{Contrastive}$$

$$L_{emotion} = -\frac{1}{|D|} \sum_{i=1}^{|D|} \hat{Y}_{i}^{e} \log y_{i}^{e}$$

$$L_{cause} = -\frac{1}{|D|} \sum_{i=1}^{|D|} \hat{Y}_{i}^{c} \log y_{i}^{c}$$

$$(14)$$

Item	Number	Percentage(%)
documents	1,945	100
-w/ 1 EC pair	1,746	89.8
-w/ 2 EC pairs	177	9.1
-w/3 EC pairs	22	1.1
pairs	490,367	100
-EC pairs	2,167	0.4
-non EC pairs	488,200	99.6

Table 1: Detailed dataset statistics.

Config	Value		
Device	GeForce RTX 3090		
Platform	Pytorch 1.8.0		
Backbone	BERT-base-Chinese		
Dimension	768		
Batch Size	4		
Epochs	50		
Learning Rate	2e-5		
Warmup Proportion	0.1		
Dropout	0.2		
K	1		
α	0.15		
eta	0.5		

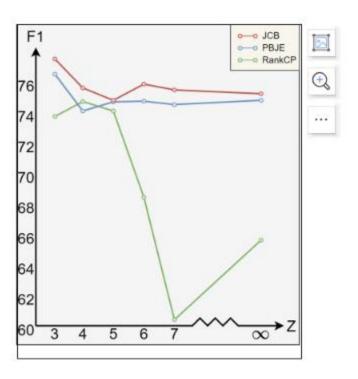


Figure 3: The fluctuation of performance when relative distance changes.

Models	Pair Extraction			Emotion Extraction			Cause Extraction		
	P	R	F1	P	R	F1	P	R	F1
ECPE-2D	72.92	65.44	68.89	86.27	92.21#1	89.10	73.36	69.34	71.23
TransECPE	77.08	65.32	70.72	88.79	83.15	85.88	78.74	66.89	72.33
PairGCN	76.92	67.91	72.02	88.57	79.58	83.75	79.07	68.28	73.75
UTOS	73.89	70.62	72.03	88.15	83.21	85.56	76.71	73.20	74.71
MTST-ECPE	75.78	70.51	72.91	85.83	80.94	83.21	77.64	72.36	74.77
RankCP	71.19	76.30#1	73.60	91.23#1	89.99	90.57#1	74.61	77.88#2	76.15
ECPE-MLL	77.00	72.35	74.52	86.08	91.91#2	88.86	73.82	79.12 ^{#1}	76.30
PBJE	79.22 ^{#1}	73.84	$76.37^{\#2}$	$90.77^{\#2}$	86.91	88.76	81.79 ^{#1}	76.09	$78.78^{\#2}$
JCB	79.10 ^{#2}	75.84#2	77.37#1	90.77#2	87.91	89.30#2	81.41#2	77.47	79.34#1

Models	Pair Extraction			Emotion Extraction			Cause Extraction		
	P	R	F1	P	R	F1	P	R	F1
JCB	79.10	75.84	77.37	90.77	87.91	89.30	81.41	77.47	79.34
-w/o Asymmetry Constraint	78.82	74.13	76.34	90.91	87.20	88.99	80.71	75.79	78.11
-w/o Contrastive Constraint	76.83	75.42	76.05	88.72	87.54	88.08	80.02	77.23	78.54
-w/o Constrained Learning	76.31	74.37	75.26	90.45	88.71	89.53	79.58	76.34	77.88
-w/o Emotion Clues	78.93	74.38	76.55	91.16	87.77	89.41	81.02	76.18	78.50
-w/o Cause Clues	79.20	74.44	76.67	91.01	87.49	89.16	81.28	76.33	78.66
-w/o Clues Alignment	79.64	73.46	76.38	91.30	86.62	88.87	81.45	75.25	78.19
-w/o Emotion Guidance	78.20	75.50	76.76	90.80	88.29	89.50	80.67	76.98	78.74
-w/o Boundary Adjusting	78.32	74.32	76.19	90.86	87.49	89.10	81.17	76.36	78.61
Clause Encoder (BERT+GCN)	73.01	76.23	74.44	89.17	88.77	88.92	77.25	78.21	77.62

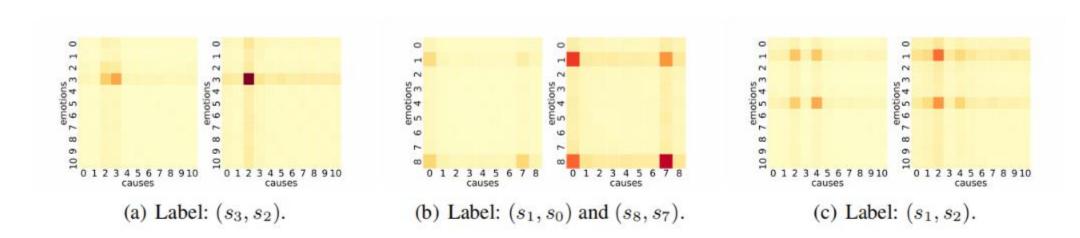


Figure 4: The heat maps of the output of PBJE (left graphs) and JCB (right graphs). The deeper color means the higher confidence. Three subfigures show asymmetric output, differentiated output, and accurate match of JCB compared with PBJE.

Models	Pair Extraction					
	P	R	F1			
RankCP	64.26(6.93\(\)	66.94(9.36↓)	65.49(8.11\bigcup)			
PBJE	$78.41(0.81\downarrow)$	71.31(2.53\(\psi\))	74.66(1.71\perp)			
JCB	78.93(0.17↓)	71.68(4.16↓)	75.09(2.28↓)			

Table 5: The results of RankCP, PBJE, and JCB without the relative distance constraint.

Models	Pair Extraction				
	P	R	F1		
k = 1	79.10	75.84	77.37		
k = 2	78.27	73.16	75.58		
k = 3	76.99	72.67	74.7		

Table 6: The decrease of performance with the increase of k.

Thanks!